翻訳と辞書 |
Terahertz time-domain spectroscopy : ウィキペディア英語版 | Terahertz time-domain spectroscopy
In physics, terahertz time-domain spectroscopy (THz-TDS) is a spectroscopic technique in which the properties of a material are probed with short pulses of terahertz radiation. The generation and detection scheme is sensitive to the sample material's effect on both the amplitude and the phase of the terahertz radiation. In this respect, the technique can provide more information than conventional Fourier-transform spectroscopy, which is only sensitive to the amplitude. == Explanation == Typically, the terahertz pulses are generated by an ultrashort pulsed laser and last only a few picoseconds. A single pulse can contain frequency components covering the whole terahertz range from 0.05 to 4 THz. For detection, the electrical field of the terahertz pulse is sampled and digitized, conceptually similar to the way an audio card transforms electrical voltage levels in an audio signal into numbers that describe the audio waveform. In THz-TDS, the electrical field of the THz pulse interacts in the detector with a much-shorter laser pulse (e.g. 0.1 picoseconds) in a way that produces an electrical signal that is proportional to the electric field of the THz pulse at the time the laser pulse gates the detector on. By repeating this procedure and varying the timing of the gating laser pulse, it is possible to scan the THz pulse and construct its electric field as a function of time. Subsequently, a Fourier transform is used to extract the frequency spectrum from the time-domain data.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Terahertz time-domain spectroscopy」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|